On a Conjecture of J. Shallit
نویسنده
چکیده
We solve a conjecture of J. Shallit related to the automaticity function of a unary language, or equivalently to the rst occurrence function in a symbolic sequence. The answer is negative: the conjecture is false, but it can be corrected by changing the constant involved. The proof is based on a study of paths in the Rauzy graphs associated to the sequence.
منابع مشابه
Frankl's Conjecture for a subclass of semimodular lattices
In this paper, we prove Frankl's Conjecture for an upper semimodular lattice $L$ such that $|J(L)setminus A(L)| leq 3$, where $J(L)$ and $A(L)$ are the set of join-irreducible elements and the set of atoms respectively. It is known that the class of planar lattices is contained in the class of dismantlable lattices and the class of dismantlable lattices is contained in the class of lattices ha...
متن کاملThe Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations
We consider a natural generalization of the Nagell-Ljunggren equation to the case where the qth power of an integer y, for q ≥ 2, has a base-b representation that consists of a length-l block of digits repeated n times, where n ≥ 2. Assuming the abc conjecture of Masser and Oesterlé, we completely characterize those triples (q, n, l) for which there are infinitely many solutions b. In all cases...
متن کاملOn the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture
The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...
متن کاملOn Silverman's conjecture for a family of elliptic curves
Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...
متن کاملDiophantine Properties of Automatic Real Numbers
We study some diophantine properties of automatic real numbers and we present a method to derive irrationality measures for such numbers. As a consequence, we prove that the b-adic expansion of a Liouville number cannot be generated by a finite automaton, a conjecture due to Shallit.
متن کامل